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ABSTRACT
We present a study aimed at understanding how human ob-
servers judge scatter plot similarity when presented with a
large set of iconic scatter plot representations. The work we
present involves 18 participants with a scientific background
in a similarity perception study. The study asks participants to
group a carefully selected set of plots according to their sub-
jective perceptual judgement of similarity, and it integrates
the results into a consensus similarity grouping. We then use
this consensus grouping to generate insights on similarity per-
ception. The main output of this work is a list of concepts we
derive to describe major perceptual features, and a descrip-
tion of how these concepts relate and rank. We also evalu-
ate scagnostics (scatter plot diagnostics), a popular and es-
tablished set of scatter plot descriptors, and show that they do
not reliably reproduce our participants judgements. Finally,
we discuss the major implications of this study and how these
results can be used for future research.
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INTRODUCTION
In recent years, we have witnessed an increase in the use of
visualization techniques for exploratory data analysis of com-
plex multidimensional datasets. Scientists and researchers
from areas as disparate as healthcare, business analytics, or
climate science, rely on interactive visualization to familiar-
ize with these complex data spaces and to generate new in-
sights.

Often, in the early stages of data analysis, scientists are in-
terested in exploring all possible associations that may exist
in a given dataset and for this reason generate and inspect
the whole set of scatter plots obtained from all possible pairs
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of dimensions. When the number of dimensions grows to
tens, hundreds, or even thousands of variables, being able to
inspect all these combinations becomes extremely time con-
suming, if not impossible, and computational approaches are
required. To overcome this problem, recent research has fo-
cused on developing techniques that guide data analysis using
a mix of interaction and statistical measures.

The basic idea behind these techniques is to develop mea-
sures able to detect plots that contain one or more patterns
of interest and to use these measures as a way to guide their
navigation and exploration. Numerous techniques have been
developed in this area. For instance, Wilkinson et al., de-
veloped graph-theoretic scagnostics, descriptors that charac-
terize scatter plots according to, e.g., how skinny, clumpy or
striated they are [2]. Tatu et al., developed a number of im-
age processing measures to quantify degrees of association
and class-separation, that is, how well separated the (colored)
classes of a scatter plot are [32]. Sips et al., developed class-
consistency measures to rank scatter plots according to their
class-separation [30]. And Reshef et al., developed the max-
imal information coefficient (MIC) score, to detect linear and
non-linear associations between pairs of variables [23].

While these measures represent an important step towards
providing support for the aforementioned task, empirical re-
search on how human observers and analysts perceive large
sets of plots and their patterns, has received, in comparison,
little attention. A few empirical works exist on the validation
of existing measures, e.g., [15, 16, 27], but only a few focus
on understanding what visual patterns people extract out of
plots and how these patterns are used for plot comparison.

In this paper, we focus specifically on understanding how hu-
man observers gauge plot similarity and what visual features
drive similarity perception. Plot similarity is a fundamen-
tal task in information visualization as many visual opera-
tions often reduce to comparing visual objects. For instance,
the widely popular small multiples techniques described by
Tufte [33], requires the observer to compare a large quan-
tity of complex images or plots arranged in a grid. Similarly,
visualizations based on iconic representations (also called
glyphs [12]) often require comparing a large set of small and
complex graphical objects across the view field.

We describe a study we conducted to capture information
about what visual features drive similarity perception in scat-
ter plots. In order to simulate the exploratory set-up we de-
scribed above, we study similarity perception with a multi-
tude of small scatter plots, under the assumption that this



truthfully represents real conditions analysts may face. The
study also, for ecological validity, involves only participants
with a scientific background, under the assumption that the
analysis of large sets of associations (scatter plots) represents
a highly specific task performed only by skilled data analysts.

The study asks participants to group, through a dedicated user
interface, a carefully crafted set of plots together into a series
of groups according to their subjective similarity judgment.
These judgments are then coded, grouped and analyzed to-
gether to generate a number of concepts that describe what
visual features drive similarity perception. These results are
then used as a comparison to the well-established scagnostics
measures to show that they are not able to reliably reproduce
the groupings generated by human observers. Finally, we pro-
vide a description of how these results can be used in practice
and what major implications can be derived from them.

In summary, the main contribution of this work is the char-
acterization of similarity perception in scatter plots, the gen-
eration of a number of perceptually-derived concepts that de-
scribe scatter plots and their comparison, the evaluation of a
popular plot similarity method (scagnostics), and the descrip-
tion of how these results can be used for future research.

This article is organized as follows. We start by introducing
the related literature on visual similarity perception and vi-
sual quality measures. Next, we introduce the methodology
that includes design decisions and assumptions, followed by
the description to the developed visual interface to facilitate
plot similarity tasks and details of the study. Further, we ana-
lyze the recorded perceptual similarity to uncover the descrip-
tive concepts and correlate them with the known scagnostics
measure. Lastly, we discuss the implications of this work, its
possible integration into visual analytics systems for guided
navigation, and lay down the roadmap for future works.

RELATED WORK

Studying Similarity Perception
We are not aware of any major study on plot similarity. How-
ever, Rogowitz et al. have studied photograph similarity [24]
using 97 digitized photographic images from a library of 5000
pictures. Wei et al. have compared 200 mammograms to un-
derstand how radiologists compare “microcalcification clus-
ters” [35]. Long et al. have compared tens of pen ges-
tures [20] to understand what stroke features have an impact
on similarity. Wills et al. have compared 55 3D images of
the Stanford bunny (a classic benchmark image used in com-
puter graphics) under different illumination conditions to un-
derstand gloss perception [37]. Demiralp et al. [10] studied
perceived similarity of color, shape and size values and de-
rived perceptually adjusted similarity measures they call per-
ceptual kernels.

While these studies come from very different areas of re-
search, they all share a common template. A group of hu-
man subjects is presented with a collection of images, and
is asked to perform a comparison judgement between them.
This information is then analyzed through multidimensional
scaling [6], which allows to transform similarity data into a

visualizable 2D embedding for understanding similarity judg-
ment. In our study, we follow a similar template: we collect a
representative set of plots, we subject it to human judgment,
and we analyze the results.

Other research has focused on modeling the perception of pat-
terns in charts. Rensink et al. and van Wijk et al. have re-
spectively created models that capture how people judge cor-
relations in scatter plots and parallel coordinate plots [19, 22].
Harrison et al. [13] have ranked visualizations of correlations
based on Weber’s law. Similarly, Albuquerque et al. have in-
troduced a generalizable method to create perceptual visual
quality measures for a pair of perceptual tasks and plot types
(e.g., correlation in scatter plots) [1].

Visual Quality Measures
The term ‘quality measure’ has been used extensively in visu-
alization research to qualify the general concept of measuring
the quality of a visual encoding through computational meth-
ods. Quality measures have been developed for a multitude
of visualization techniques. There are essentially three ways
in which quality measures have been used: 1) detecting op-
timal levels of data abstraction (e.g., through sampling and
aggregation) [4, 7, 17]; 2) finding optimal ordering in visu-
alizations that allow multiple axis-ordering (e.g., in parallel
coordinate plots and scatter plot matrices) [3, 21]; and 3) find-
ing projections of high-dimensional data that contain patterns
that end-users may be interested in [9, 11, 26, 30, 32, 36].

Scatter plots have received by far the most attention. Several
‘quality metrics’ have been developed to describe or charac-
terize their appearance or quality; these focus on visual fea-
tures like clusters and outliers [11, 18], correlations [29], and
class-separations [28, 30, 32], or on more complex patterns.
Anand & Wilkinson’s graph-theoretic scagnostics [36] can
describe and measure complex scatter plots according to a
multitude of descriptive features: outlying, skewed, clumpy,
convex, skinny, striated, stringy, straight, monotonic.

STUDYING PERCEPTUAL SIMILARITY OF PLOTS
To study plot similarity, we need to: 1) generate a represen-
tative sample of plots that contain a sufficiently broad set of
patterns to produce a meaningful characterization; and 2) find
a reliable mechanism for capturing human similarity judg-
ments. In this section, we describe our approach, and the six
main steps we followed to address these two needs (Figure 1).

Data Generation
The data generation phase consists of the following steps: (1)
selecting datasets; (2) generating scatter plots; and (3) reduc-
ing the number of plots to ensure a manageable human study.

Dataset Selection (1)

For our study, we collected 717 datasets from the R statisti-
cal analysis software 1 and from our lab data archive. These
datasets cover a broad range of real-world data of different
sizes, dimensionality, and patterns. We chose to avoid syn-
thetic datasets becasue they often contain patterns that are
1More information at: https://stat.ethz.ch/R-manual/

R-devel/library/datasets/html/00Index.html
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Figure 1. The six stages of methodology to study perceptual similarity of scatter plots. The first three stages are grouped under a broader phase of data

generation, while the latter three are grouped under human judgment collection phase.

never (or very rarely) encountered in real-world data analysis.
This, however, means that our study differs from those pre-
sented by others, like Sedlmair et al. and Wilkinson et al.’s
studies [28, 36], in which, e.g., perfectly separated/uniform
clusters and perfect sinusoidal shapes appear.

Scatter Plot Generation (2)

For each dataset selected in step (1), we created scatter plots
for every unique combination of dimensions—except combi-
nations of identical dimensions. Thus, for N datasets selected
in step (1), we obtain

PN
i=1

di(di�1)
2 , where di is the number of

dimensions in the ith dataset. For the visual encoding, we used
2 pixel diameter blue data points with 0.2 alpha channel in a
47 ⇥ 47 pixels canvas generated using matplotlib [14]. We
selected these values empirically trying to find a good bal-
ance between plot size, the range of data densities and pattern
visibility. Altogether, in this step we generated over 84, 000
scatter plots.

Selecting Scatter Plot Stimuli (3)

Running a study in which each participant has to analyze and
compare over 84, 000 scatter plots (which we refer to as orig-
inal space) is clearly unfeasible. Not only it is very hard to
analyze such a high number of plots individually (as has been
done in the work of Sedlmair et al. [28]) but, given the com-
parative nature of our similarity task, the study would require
participants to make an enormous number of pairwise com-
parisons. Therefore, we needed a method to systematically
reduce the number of plots to a manageable size without los-
ing too much information. To this purpose, we used a com-
bination of computational and manual approaches using di-
versity as the guiding principle, that is, the more diverse the
final set of plots is the more we can capture important and
interesting perceptual phenomena.

In order to maximize diversity in a principled manner, we de-
veloped a three stage stimuli selection method; the first two
stages of which use scagnostics (computational approach),
while the third is based on visual and manual inspection. We
decided to use scagnostics because they are the de facto stan-
dard for scatter plot characterization, and also because they
allow us to compare the results of our study to the most pop-
ular, but not perceptually validated, technique.

The first stage of our selection method consists of sampling
plots by binning nine of the original scagnostic measures in-
dependently. The goal is to sample plots uniformly across
each measure. For each scagnostic measure (range: 0-1), we

created ten uniform bins ([0, 0.1), [0.1 � 0.2), ..., [0.9 � 1.0]),
grouped the original set of plots according to these bins, and
randomly sampled one scatter plot for each one. By sam-
pling at least one scatter plot for each bin across all measures
(avoiding duplications) we extracted 90 plots from the origi-
nal space.

The second stage of our selection method consists of sam-
pling the plots by considering all scagnostic measures to-
gether. That is, rather than binning the measures indepen-
dently, we aim at sampling the multidimensional space de-
scribed by the measures directly. To this purpose, we run a k-
means clustering algorithm on the original space and grouped
the plots into k = 100 clusters (arbitrarily chosen and moti-
vated by [35]). From each cluster we then randomly sampled
100 plot for a total of 10, 000 candidates (100 plots per clus-
ter, for 100 clusters).

In the third and final stage, starting from the plots obtained
from the computational steps, we agreed on selecting a man-
ageable number of plots (in the order of one or two hundreds)
while ensuring as much diversity as possible. For each clus-
ter and bin used in the previous steps, we discarded plots that
looked too similar and kept as many unique patterns as pos-
sible. In the end, after visual inspection of all 10, 090 scatter
plots, we extracted a final stimuli sample of 247 plots.

It is important to point out that such a sampling scheme does
not represent a uniform and representative sample of all possi-
ble scatter plot trends and characteristics. The three steps we
described have been devised exclusively to ensure as much di-
versity as possible, under the assumption that more diversity
increases the chances of capturing relevant perceptual phe-
nomena. Unfortunately, there is no established method to en-
sure that all possible key patterns are included in the stimuli.
Also, for practical purposes one must necessarily limit the
number of sample plots to a manageable number. Alterna-
tive sampling methods may have been used, such as uniform
sampling over the whole set of plots or different plot descrip-
tors. Uniform sampling however does not take into account
the possible skewedness of plot feature distributions, and al-
ternative descriptors, as we pointed out above, does not seem
to be available for the specific task of plot similarity.

Human Judgment Collection
The human judgment collection phase consists of the follow-
ing steps: (4) grouping scatter plots according to perceptual
judgement; (5) building perceptual consensus; and (6) ana-



lyzing human observer consensus using quantitative and qual-
itative methods.

Perceptual Scatter Plot Grouping (4)

In order to capture similarity judgements, we decided to use
open card sorting. Card sorting consists of asking a group
of human subjects to organize samples (physical or digital)
into a set of categories or groups that make sense to them
(that is, that capture their subjective intuition of similarity).
Such technique has been widely used in designing informa-
tion architectures, workflows, menu structures and in several
psychology experiments, to reveal ‘mental models’ from a
group of human subjects [31] and it is an effective way to
learn about how users group, label, and prioritize information.
In our study, we therefore presented the participants with the
whole set of plots and asked them to group them according to
their perceived similarity.

It is important to point out that we intentionally did not define
or describe similarity to our participants, as capturing and un-
derstanding their subjective perception of similarity is one of
the major goals of this work. While providing more precise
tasks related to the detection of specific patterns is also inter-
esting and important, in this work, similarly to what others
have done in the past [1, 24, 38], we focus exclusively on
subjective perception of similarity.

In order to better characterize this process, we also explicitly
asked the participants to answer the following questions for
each group they created: a) “On a scale of 1-5 (1 = very diffi-
cult, 2 = difficult, 3 = neutral, 4 = easy, 5 = very easy), answer,
how difficult or easy was it for you to create this group?”, and
b) “On a scale of 1-5 (1 = very doubtful, 2 = doubtful, 3 = neu-
tral, 4 = confident, 5 = very confident), answer, how doubtful
or confident are you about the consistency of the plots in the
group, i.e., you would create the same group if you work with
the interface again?” 2

Building Perceptual Consensus (5)

Once data about each participant has been collected, it is nec-
essary to bring individual results together into a unified de-
scription of plot similarity able to capture the main percep-
tual phenomena across all participants. To this purpose, we
use the following data elements that capture the data collected
in the experiment: a) a perceptual similarity distance matrix;
b) an easiness array; and c) a confidence array.

A perceptual distance matrix (PDM) is created for each par-
ticipant by computing the pairwise similarity between plots,
based on their occurrence in the participant-generated groups.
The calculated perceptual distance scores between each pair
of plots are put into a 247 ⇤ 247 matrix, where cells are com-
puted using Equation 1.

vi, j =
1
N

NX

k=1

 
1 � ci, j

min(ci, c j)

!

k
(1)

vi, j represents the perceptual distance score between plots i
and j; N is the total number of participants (18) in the study;
2Further details about the study are provided in the later sections.

ci, j is the number of clusters/groups that contain both plots,
whereas, ci and c j are the number of clusters/groups that con-
tain plots i and j, respectively. The values of ci, j, ci, and c j
vary for each participant k.

The easiness and confidence arrays require a slightly different
approach. Since the responses to the easiness and confidence
questions are related to the groups (and not directly to the
plots), we assume that the plots within a group can inherit the
easiness and confidence values from the groups they belong
to. For instance, if a participant can easily create a group ‘A’
(e.g., easiness score = 4), and is very confident about the con-
sistency of the plots within the group (e.g., confidence score
= 5), we assume that all plots in ‘A’ can inherit the same eas-
iness and confidence scores. With this assumption, the con-
sensual easiness and confidence scores are computed for each
plot using Equation 2.

yi =
1
N

NX

k=1

0
BBBBB@

1
ci

ciX

c=1

xi,c

1
CCCCCA

k

(2)

yi represents the consensual easiness or confidence score for
plot i ; N is the total number of participants (18 in our study)
in the study; ci is the number of clusters/groups containing
plot i that participant k creates; and xi,c is the easiness or con-
fidence score given by the user to the cluster/group c contain-
ing plot i.

Finally, for each cluster (or group of plots), we can compute
the average easiness and confidence scores using the Equa-
tion 3, described below.

Cyo =
1

No

NoX

i=1

yi =
1

No

NoX

i=1

0
BBBBBB@

1
N

NX

k=1

0
BBBBB@

1
ci

ciX

c=1

xi,c

1
CCCCCA

k

1
CCCCCCA (3)

Cyo is the average easiness or confidence score for cluster o
and No is the total number of plots that belong to cluster o.
We substitute yi with the expression from Equation 2. The
definition of other variables in the equation is similar to that
in Equation 2.

Analyzing User Consensus (6)

The two main questions behind our study are: a) What are the
most dominant dimensions or plot features that can be used
to model human perception in scatter plot similarity tasks?,
and b) How does perceived similarity correlate with some of
the existing measures, such as graph-theoretic scagnostics?
To answer these questions, in this final step, we use the per-
ceptual distance matrix (PDM) to find consensus grouping of
plots and analyze the consensus groups to identify dominant
visual elements that play a role in similarity perception. This
same information is also used to compare perceptual similar-
ity to similarity computed with the scagnostic measures.

STUDY DESIGN
In this section, we highlight the various components of the
study design that incorporate the design decisions mentioned
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Figure 2. Primary user tasks and interactions – (1) drag-and-drop in-

teraction to arrange plots, (4) lasso-selection to create plot groups, (5)

editable text area to provide description for each plot group, (8) append

easiness and confidence scores to the text area.

earlier. We start by explaining the details of the user inter-
face including the various user tasks and interface features;
we then discuss the pilot studies we conducted to refine the
interface; and we finish by describing the human study.

User Interface Design
We develop an open card sorting interface, as shown in Fig-
ure 3, that allows the users to group the 247 scatter plots col-
lected in step (3). Based on the feedback from a pilot study
conducted with 5 participants using a think-aloud protocol,
we identify a series of primary (tasks 1, 4, 5, and 8) and sec-
ondary user tasks (tasks 2, 3, 6, and 7) along with the interface
features and interactions to support the tasks. The following
user tasks and supporting interface features/interaction con-
stitute our final interface design.

Tasks: (1) arrange plots based on their similarity, (2) move
multiple plots, (3) flag/unflag plots to review later (4) create
plot groups, (5) provide description for each plot group, (6)
edit group descriptions, (7) delete plot groups, (8) provide
easiness and confidence scores for each plot group.

Interface features and interaction: (1) drag-and-drop inter-
action to arrange plots, (2) lasso-selection to move multiple
plots, (3) single-click to flag/unflag plots for later review, (4)
lasso-selection to create plot groups, (5-6) editable text area to
provide description for each plot group, (7) delete text area to
delete plot groups, (8) append easiness and confidence scores
to the text area.

We segment the user tasks into two phases, positioning and
naming. In the positioning phase, the users perform tasks 1-
3, i.e., spatially arrange plots based on their similarity, move
multiple plots, and flag/unflag plots for later review. The in-
terface supports interactions 1-3 in this phase. We randomly
arrange all 247 plots in a scrollable list (left-right) on top of

the interface, as shown in Figure 3(a). Users can drag-and-
drop plots from the list onto the canvas, shown in Figure 3(b).
Using lasso-selection, users can select and move multiple
plots. Users can single-click on the plot to flag/unflag. The
‘Freeze’ button at the bottom only activates once the users
have placed all the plots from the list onto the canvas. Once
the ‘Freeze’ button is clicked, the users can not reposition the
plots. This was done to restrict users from re-arranging plots
into groups that are easier to describe in order to decrease the
cognitive effort involved - a behavior we observed in our pilot
study.

In the naming phase, the users perform tasks 4-8, and the
interface supports interactions 4-8. Users can use the lasso-
selection to create plot groups. Users can assign multiple
plots to one group, and conversely, plots can share multiple
groups based on different grouping criteria. This also allows
the users to create hierarchical and alternate groups. For each
group the user creates, the interface prompts a text area to
provide a textual description. The description is then placed
at the centroid of all plots. User can click on the description
text to edit it, or remove the text completely to delete the plot
group. The easiness and confidence scores can be provided in
the same text box, delimited by a pipe ‘|’ character. Hover-
ing on the description text highlights all the plots belonging to
that group. Clicking on ‘Finish’ records the user’s response
on the server, including the start and end time of the study,
and group information – plot ids, plot positions, text descrip-
tion, easiness and confidence scores.

Figure 2 shows various user tasks and corresponding interac-
tions in the positioning and naming phases.

User Study
In this section, we discuss the details of the final user study
conducted using the improved interface. Figure 4 shows var-
ious stages of the user study.

Participants and Apparatus
One of the main recruitment criteria is experience with data
analysis, and familiarity with scatter plots. We recruit 18
participants (15 males, 3 females) with diverse levels of ed-
ucation (undergraduate, graduate, post-graduate) and disci-
plines (computer/electrical/mechanical engineering, design,
management). The recruitment is done using fliers and per-
sonal messages to data analysts. Some of the participants are
associated with an academic organization, while rest come
from industry. All the participants have actively engaged in
data analysis tasks and are familiar with scatter plots. The av-
erage age of the participants is 27.3 years. Each participant is
paid $5 dollars or gift-cards of equivalent amount for the par-
ticipation. The studies are conducted in the lab setup using a
27-inch monitor with full-HD resolution (1920 ⇥ 1080).

Procedure
Once a candidate is short-listed, i.e., satisfies the recruitment
criteria, a confirmatory email/message is sent scheduling the
user study. When the participant agrees, a consent form is
sent, describing various details of the study, including what
we will be recording and how they will be compensated.
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Figure 3. The open coding interface to capture perceptual similarity and quantitative values. (a) shows a list of randomly arranged plots visible only

in the positioning phase. (b) shows an example final screen at the end of the naming phase with group descriptions, easiness and confidence scores

separated by a pipe character.
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Figure 4. User study pipeline showing various steps with main highlights that users go through during the experiment. The timeline at the bottom

shows an approximate time taken by the users to complete the step (from the start of the study).

Upon consent, we describe the various stages of the study and
the expectations. Then, the user is given a form to provide
demographic information, such as gender, age and education
level. Next, one of the co-authors provide a 5-10 minutes
demonstration of the user interface while explaining the user
tasks, expectations, interface capabilities and limitations. The
interface is loaded with a dummy dataset with 14 multi-class
scatter plot matrices images in order to avoid biases intro-
duced by the guided demo phase. The actual study involves
only single-class scatter plots. We also emphasize that we are
only interested in the groups that they create and the plots
within the group, and not in the spatial distances between
plots or groups. More precisely, it is fine if they place two
very dissimilar groups next to each other or similar looking
groups away from each other.

The users are also told that they can not re-position plots once
they click on the ‘Freeze’ button at the end of the positioning

phase, so they should take a break and review the arrange-
ments before clicking it. Similarly, they are told they can not
update the groups or their descriptions once they click on the
‘Finish’ at the end of the naming phase, so they should review
the groups before finishing the study.

Upon completion of the demo, we load the interface with the
same 14 scatter plot matrices that are used for the demo and
start the training step. During this 5-10 minutes long train-
ing step, users try to replicate the tasks and are free to ask
questions and seek clarification. In the meantime, the in-
vestigator monitors the activity, guides the user if they are
stuck, and deliberately prompts the user to perform certain
tasks such as moving multiple plots, which may come handy
at a later stage. The participants are reminded to review the
arrangements and groups when they are about to complete the
positioning or naming phases. Once the participants are ac-
quainted with the tasks and the interface, we finish the train-



ing. Lastly, they are told that they have a choice to not group
plots that look completely arbitrary or random, or can group
them using the keyword ‘distinct’, which would mean that the
plots don’t look similar to any other plot on the canvas.

Next, the interface is loaded with the 247 stimuli samples,
starting the final study. The investigator leaves the study area
to minimize interruptions and biases, while monitoring the
area from a distance. Under doubt or willing to seek clarifi-
cation, the participants can get up as a signal for help. The in-
vestigator follows up, clarifying any doubts. Upon the end of
the study, the responses are recorded and participant is com-
pensated. The final study takes between 45 minutes to 1 hour.

As the last step, we collect qualitative feedback from the par-
ticipants, asking about the strategies they adopted to group the
plots. More precisely, we ask why they created some groups
first while others at the last. We also have an open-ended dis-
cussion around the tasks and patterns that appear on the plots.
This qualitative feedback session takes 10-15 minutes. The
duration of the study for each participant, from providing de-
mographic information till the end of qualitative feedback, is
approximately 1.5 hours.

RESULTS AND FINDINGS
We run quantitative as well as qualitative analyses on the col-
lected responses in order to answer the primary set of ques-
tions we are interested in. The analyses incorporated the as-
sumptions we laid out earlier, like inheritance of easiness and
confidence scores from groups to plots. We also ignore plots
that are grouped under ‘distinct’ by 9 or more users. These
are plots that look very dissimilar to other plots. In this sec-
tion, we discuss the quantitative and qualitative analyses con-
ducted on the collected responses.

Quantitative Analysis
We segment the quantitative analysis into two parts - a) cor-
relation between perceived similarity and scagnostics-based
similarity, and b) extraction and analysis of common clusters
based on user consensus.

Perceived Similarity vs. Scagnostics-based Similarity

First, we describe each plot from the 247 stimuli sample using
9 scagnostics measures computed using R’s scagnostics li-
brary [34]. Next, we compute pairwise Euclidean distance be-
tween each plot to build a scagnostics distance matrix (SDM).
We then extract distance between unique pairs (A-B and B-A
are considered same) from the matrix and analyze correla-
tion. As anticipated earlier, we find very weak correlation
(Pearson’s r < 0.26) between the perceived distances and
scagnostics-based distances. We create a MDS projection of
the SDM. We could not find any distinct clusters in the pro-
jection. Next, we run hierarchical clustering and test a broad
range of cluster numbers. Although most clusters are incon-
sistent, we do find that striated (or line-like) plots are grouped
consistently in the same cluster. We don’t find a group of con-
sistent clusters comparable to those we obtain from the PDM
(discussed below), shown in Figure 5.

Figure 6. Dominant terms in a cluster based on their frequency across

master descriptions of each plot.

Extraction and Analysis of Consensus Clusters

As the first step to quantitatively analyze the collected re-
sponses, we use the PDM created earlier to identify clusters of
similar plots. We run hierarchical clustering on the distance
matrix in order to create clusters. Figure 5 shows the hierar-
chical clusters created in the process of this analysis. To iden-
tify the right value for the number of clusters, we compute the
average number of groups created by the users. The mean of
the number of groups created by the users is 24 with 95%
confidence interval in [18.54, 23.46]. However, as often users
also create alternate groups, we decide to use k = 20. Next,
we cut the hierarchical cluster tree to extract out 20 clusters.
We find that two clusters (9 and 19 in Figure 5) comprised of
plots that are tagged as ‘distinct’ by more than 9 users. There-
fore, we reject these two clusters and the plots grouped within
these clusters, from our analyses.

Using the consensual easiness and confidence values for the
remaining plots obtained using Equation 2, we find that the
easiness and confidence scores are highly correlated with
Pearson’s r = 0.97. The average easiness and confidence
scores for each cluster along with their 95% confidence inter-
vals are presented in Table 1.

Qualitative Analysis
To qualitatively analyze the clusters obtained using hierarchi-
cal clustering, it is important to associate (or derive) the tex-
tual descriptions users provided for each group to the clusters.
We adopt the same inheritance assumption as earlier (for eas-
iness and confidence scores), i.e., plots can inherit the textual
description users associate to the group they are part of. First,
we create master description for each plot that combines tex-
tual descriptions provided by all users. Next, we create 20
description files, one for each cluster, with images of plots be-
longing to the cluster and corresponding master descriptions.
Additionally, we extract the dominant terms to describe each
cluster, i.e., most frequently occurring terms from the master
descriptions of all plots contained in the cluster.

An example of dominant term analysis step is shown in Fig-
ure 6. Note that we do not need to sanitize the terms us-
ing stemming, lemmatization, etc., in hope to capture higher
granularity of perception. We also exclude clusters 9 and 19
from the analyses, as they contain highly dissimilar plots.
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Figure 5. Showing all 247 plots used in the studies, grouped into 20 clusters extracted using hierarchical clustering approach. The plots propagate from

left-to-right, top-to-bottom. Each cluster is assigned a unique ID.

We then group these terms into common concepts, e.g., hor-
izontal, vertical, inclined are grouped into ’orientation’. At
the end of the open-coding process, we identify 6 common
concepts that can be used as a vocabulary to describe simi-
larity between scatter plots, and are as follows: 1) density, 2)
orientation, 3) spread, 4) regularity, 5) groupings, 6) edges.

Finally, we plot the scatter plots using multidimensional scal-
ing projection of the PDM. We also associate the cluster in-
formation to each plot, i.e., which cluster the plot belongs to,
by adding anchors on the plot colored by cluster ID. Through
visual inspection, we identify the most compact clusters and
dominant axes aligning certain concepts. By combining this
information with the concepts identified, we describe each
cluster using a set of dominant concepts (Table 1).

We now describe each concept identified through the process
described above, while referring to certain clusters in Figure 5
as examples showing these concepts in action. In addition, we
discuss the common terms and phrases that are used by users
to describe the plots in those clusters.

1) Density: Density refers to the concentration of data points
in certain region of the plot and can vary from high-density to
low-density. We find that among plots that are grouped based

on high density, there exists a high variance with respect to
their visual appearance (refer to cluster 8 in Figure 5). In
other words, regardless of how the shapes of the plots vary, as
long as there exists a high density pattern, the plots are often
grouped together. This is especially interesting as it indicates
that density may have higher impact on users’ perception of
plot similarity. Common terms used by users to describe den-
sity are ‘thick’, ‘sparse’, ‘concentrated’ etc.

2) Orientation: Orientation is described by the data distribu-
tion across the two axes of a scatter plot and can be ‘hori-
zontal’, ‘vertical’, ‘inclined lines’ etc. While some users de-
scribe orientation by quoting data property, like ‘correlation’,
‘increasing trend’ etc., others use only only appearance to de-
scribe the plots like ‘bottom-left to top-right’, ‘left-heavy’ etc.
Clusters 5, 10, 12, 16 in Figure 5 are a few examples where
orientation plays an important role in perceptual grouping.

3) Spread: The area occupied by the data points on a scatter
plot, or its spread, also affects the similarity perception. Gen-
erally, spread of data points is relative to the size of the scatter
plot in consideration. It is important to note that spread does
not correlate with density, i.e., it is possible to have plots with
all combinations of spread values. However, when the other



ID Dominant Concepts Easiness Confidence

0 Density, Spread, Grouping 3.23 [3.10,3.36] 3.01 [2.91,3.10]
1 Density, Spread, Edges 3.57 [3.49,3.65] 3.50 [3.43,3.57]
2 Edges, Orientation, Grouping 3.35 [3.21,3.48] 3.11 [2.99,3.24]
3 Spread, Density 2.83 [2.75,2.91] 2.59 [2.50,2.69]
4 Edges, Spread, Density 3.19 [2.92,3.45] 2.89 [2.56,3.22]
5 Orientation, Regularity 4.56 [4.41,4.71] 4.50 [4.33,4.68]
6 Density, Spread 3.11 [3.02,3.20] 2.89 [2.78,3.00]
7 Spread 2.96 [2.86,3.06] 2.61 [2.49,2.74]
8 Density, Grouping 3.68 [3.63,3.72] 3.49 [3.44,3.54]
9 X X X
10 Orientation, Edges 4.15 [3.98,4.32] 3.83 [3.71,3.95]
11 Edges, Density 3.76 [3.72,3.79] 3.30 [3.26,3.35]
12 Orientation, Density 4.03 [3.69,4.36] 3.95 [3.53,4.38]
13 Orientation 4.29 [4.13,4.45] 4.14 [3.95,4.34]
14 Density, Grouping 3.51 [3.21,3.82] 3.30 [3.00,3.60]
15 Regularity 4.67 [4.58,4.75] 4.50 [4.36,4.64]
16 Edges, Orientation, Regularity 4.35 [4.22,4.49] 4.06 [3.91,4.20]
17 Density, Spread, Regularity 3.00 [2.80,3.20] 2.85 [2.56,3.14]
18 Spread, Orientation 3.23 [3.04,3.41] 3.03 [2.82,3.25]
19 X X X

Table 1. Dominant concepts for each group with mean easiness and con-

fidence scores along with their 95% confidence intervals. Rows marked

with ‘X’ are groups discarded as they contain very dissimilar plots.

concepts, say density or orientation, are not dominant in the
plot, it becomes really difficult to group the plots together
based on just spread (refer to cluster 7 in Figure 5 and Ta-
ble 1). Common terms used by users to refer to area based
grouping are ‘space’, ‘spread’, ‘big’, ‘small’ etc.

4) Regularity: Regularity refers to the consistency with which
certain concepts, like shape or density, appear throughout the
plot. In other words, regularity can refer to the repetition of
certain patterns in a plot. For example, in Figure 5 clusters 10
and 16 show strong linear patterns that are repeated through-
out the plots. Similarly, in cluster 15, grid-like structures are
consistent throughout the plot. Regularity is often reported
using terms like ‘well-spaced’, ‘regular’, ‘structured’ etc.

5) Grouping: Grouping or clustering refers to a set of distin-
guishable groups present on a scatter plot. When comparing
plots based on grouping, users look for the presence or ab-
sence of groups that form the grouping. In simpler words, if
a pair of plots contain a set of groups, say a line-like structure
and a point cloud; they would be suitable candidates to group
together based on grouping concept. Users report grouping,
similar to that in cluster 2 in Figure 5, by explicitly mention-
ing the underlying patterns using phrases like ‘vertical line,
spreading points’, ‘line and noise’ etc.

6) Edges: Distributions with strong edges also have an effect
on the perceived similarity between plots. This concept over-
laps with density and orientation when the points are more
uniformly distributed. When the points are distributed in
shapes with strong edges, e.g., ‘T-shaped’ or ‘L-shaped’ dis-
tributions, users refer to them using explicit terms and phrases
that describe the shapes they see. Some of the groupings
where edges seem to play an important role are clusters 1,
2 and 11 in Figure 5.

As it can be seen in Table 1, most clusters contain a combina-
tion of dominant concepts. A particularly interesting observa-
tion is that some combinations of concepts lead to higher eas-

7 7

3

3

8

8

1

1

11

11

g10

10

5
5

15

15

Figure 7. A multidimensional scaling projection of the perceptual dis-

tance matrix showing distribution of plots. The elliptical shapes denote

clear, compact clusters. The clusters are tagged with their cluster IDs,

along with a representative image of the clusters.

iness and confidence scores, while others tend to be relatively
weak and lead to lower scores. For example, regularity and
orientation lead to easier and confident grouping, whereas,
grouping plots based on spread is much more difficult. Sim-
ilarly, an interplay of density and edges lead to easier and
confident grouping. We present the MDS projection of the
PDM in Figure 7 with clusters denoted using colors. At the
top-left, low density and high spread are common. When we
move towards the bottom-right, we see more structured plots
with high regularity. Towards the left-center, we see plots
with higher density, slightly lower to which are plots with
strong edges, less spread and high density. Through visual
inspection, we find that density, edges, regularity and their
combinations are the most dominant concepts in perceptual
grouping of scatter plots.

In future, one can discuss the issues of categorization of these
concepts into basic, subordinate and superordinate levels - a
popular concept in vision science [25].

IMPLICATIONS
In the following we describe a number of implications and
take-home messages we derive from our study.

Need to develop perceptually-balanced quality measures.

As we have seen from the comparison with the scagnostics
method, measures that do not explicitly take into account hu-
man perception may actually fail to reproduce human vision
and judgment accurately. We posit that research on visual
quality measures [5] should be calibrated and expanded by in-
creased knowledge of how humans extract information from
plots. In this sense the work of Rensink et al. [22], Harrison
et al. [13], and Li et al. [19] on perception of correlation go
in the right direction. The work we presented in this article
move one step forward in this direction by providing a finer
characterization of perceptual similarity.

Perceptual descriptors can be used to derive perceptually-

balanced similarity functions. The analysis we ran on the
results allowed us to derive a number of plot descriptors.
While in this article we did not try to develop computational
methods to compute these descriptors, we believe they form
the basis for future development in this direction. While de-



veloping these concepts we strove to develop them keeping
an eye to how feasible their implementation would be. Even
though more research is needed to develop and evaluate such
computational methods, we are confident they can be reliably
implemented in computer-based algorithms.

Perceptual descriptors can be used to navigate large sets

of plots. Even though, as we said, computational methods
that implement our concepts do not exist yet, we deem it im-
portant to briefly describe how they may be used in practice.
Plot descriptors can be used in the exploration of large set of
plots in two main ways. First, to single out or rank the plots
according to one or more concepts at a time (e.g., density,
regularity, orientation) using a dynamic query filtering mech-
anism. Second, they can be used to create similarity functions
that group plots with established clustering and projection al-
gorithms. More technically, one can build a visual tool that
uses plot summarization as a starting point for exploratory
data analysis, similar to ScagExplorer [8].

Perceptual similarity vs. data semantics. When studying
human perception of plots, we need to figure out the interrela-
tionship between visual perception and data semantics. Judg-
ing plots according exclusively to their appearance may be
present some limitations. For instance, we noticed that plots
with high overall density tend to be grouped together regard-
less their orientation or distributions, which are clearly char-
acteristics that denote different data distributions. When we
group plots according to their density, we neglect important
aspects of the data that should be taken into account. While
we are not solving this problem here, we deem it important to
raise this issue for future research.

CONCLUSION AND FUTURE WORK
In this article, we have focused on how humans group plots
according to similarity. We conducted a study aimed at un-
derstanding how human observers judge scatter plot similar-
ity when presented with a large set of iconic scatter plots. We
used both computational and qualitative methods to choose
the final set of scatter plots, and to design our study. Using
a perceptual distance matrix, we computed correlation be-
tween the perceived pairwise distance and scagnostic-based
pairwise distance between plots. We found that scagnostics
do not map well to our human perceptual judgements. We
then identified key concepts of perceived similarity. Finally,
we have discussed the dominance of these concepts, and the
overall implications of our work for various domains.

One important extension of our work will be to study the role
of appearance vs. data semantics in similarity perception,
and categorizing them into basic, subordinate and superordi-
nate levels. Another will be to conduct a more fine-grained
analysis of each of our perceived similarity concepts to iden-
tify the dominant sub-concepts. Finally, it should prove in-
teresting to develop perceptually validated similarity metrics
that use all our concepts.
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