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Fig. 1. As a part of a case study with a clinical researcher, COQUITO is utilized for medical cohort analysis. The researcher visually
applies a series of temporal constraints to a patient population and generates a cohort to statistically analyze.

Abstract— Many researchers across diverse disciplines aim to analyze the behavior of cohorts whose behaviors are recorded in large
event databases. However, extracting cohorts from databases is a difficult yet important step, often overlooked in many analytical
solutions. This is especially true when researchers wish to restrict their cohorts to exhibit a particular temporal pattern of interest.
In order to fill this gap, we designed COQUITO, a visual interface that assists users defining cohorts with temporal constraints.
COQUITO was designed to be comprehensible to domain experts with no preknowledge of database queries and also to encourage
exploration. We then demonstrate the utility of COQUITO via two case studies, involving medical and social media researchers.

Index Terms— Visual temporal queries, cohort definition, electronic medical records, information visualization.

1 INTRODUCTION

Researchers in many disciplines, such as medicine, social science, and
business analytics, seek to understand the effects of various factors on
cohorts, a population or group of individuals with common features.
For instance, in medicine, researchers may want to understand if a
cohort is at risk of developing a disease or health outcome, or social
media researchers may wish to understand if a cohort will adopt a new
social technology. In the era of Big Data, where electronic medical
records and social data logs are commonplace, the opportunity to do
retrospective cohort studies has never been greater. However, extract-
ing cohorts with temporal constraints from databases is an important
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yet difficult step, often overlooked in many analytical solutions.
While there are many tools to assist researchers in filtering popu-

lations by attributes or facets (e.g. i2b21 and BTRIS2 in medicine),
many cohort studies require their subjects to exhibit a temporal pat-
tern to qualify. Unfortunately, these traditional query tools often lack
support for temporal queries.

Suppose medical researchers wish to understand the treatment ef-
fectiveness for patients suffering from a disease. They may need to
define a cohort as a set of patients with a disease diagnosis A, fol-
lowed by a medication prescription B and a performed procedure C
happening within 3 days apart from each other, and within 7 days after
A. Alternatively, the cohort should also contain other patients with a
diagnosis A followed by a treatment D within 5 days. A visual rep-
resentation of this query is illustrated in Fig. 2. Expressing such a
temporal query is extremely complex with standard query languages,
such as SQL. Recently, there have been several research projects de-
signed to define temporal constraints on populations [13,29], but these
approaches typically rely on filling out a set of forms, and do not give
feedback about the results until all constraints have been defined.

1http://www.i2b2.org
2http://www.btris.nih.gov
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Fig. 2. An illustrative query that demonstates how temporal constraints
work, beginning with the full population (the leftmost source junction)
and the resulting cohort at the rightmost node. To demonstrate how
partial results work, an example timeline of a single patient is presented.
Junction 1 contains only patients with an event A in their time line. Junc-
tion 2 contains those that also have an event B and C at most 3 days
apart from each other and within 7 days after the initial event A. Junction
3 contains patients with an event D within 5 days after the initial event
A. The result junction contains all patients that satisfied either junction
2 or 3.

In order to fill this gap, we designed COQUITO, a visual inter-
face that assists users in building COhort QUeries with an ITera-
tive Overview for specifying temporal constraints on databases. CO-
QUITO was designed to be accessible to domain experts with no pre-
knowledge of database queries. But most importantly, it was designed
to encourage exploration, where all types of data can be used in the
query, intermediate results are shown so users can iteratively adapt
where a query yields too few results or too many results, and users
receive hints on what to include in a query using visual summaries of
the databases contents.

Concretely, our contributions are:
a. A novel visual query UI that allow users to specify temporal

constraints in a user-centric way. Interactions are done by drag-and-
dropping patterns of interest, rather than relying on forms, modal di-
alog boxes, or an SQL-like language. Users can build queries using a
hierarchical event dictionary, to easily specify event types at the level-
of-detail relevant to them. Users receive continual, real-time feedback
about the result set as new constraints are added and results are en-
coded within the visual query.

b. A novel Temporal Query Server that is optimized to support
complex temporal queries on large databases with interactive feedback
for real-time exploration.

c. Case studies, involving medicine and social media, that illus-
trate that COQUITO is an effective tool for domain experts defining
temporal-based cohorts on real-world datasets.

Our paper begins with a description of the motivation for our tool,
which is rooted in a medical informatics scenario. We then describe
related work, following by a description of our system. After that we
describe case studies of domain experts utilizing COQUITO in their
research. Finally, we conclude with a discussion and our plans for
future work.

2 MOTIVATION: MEDICAL INFORMATICS AND PREDICTIVE
MODELING

The desire to create temporally-constrained cohorts is common to
many domains. However, the design of COQUITO was motivated by
our experience working with medical researchers using retrospective

electronic medical records for predictive modeling so they can under-
stand the risk of disease onset for patients. Medical institutions are
increasingly collecting electronic medicals records (EMR) systems on
their patients that combine information about diagnoses, procedures,
medications, laboratory test results, and more. EMRs can be leveraged
in predictive modeling, a common and important methodology used in
healthcare research to personalize treatment guidelines [17] or detect
diseases earlier before they progress [2].

Cohort construction, also known as cohort selection, is the first step
of the predictive modeling pipeline [22, 30]. Without properly defined
cohorts, the quality of the models and predictions will be impacted.
Often, predictive models require the definition of multiple cohorts. For
example, if researchers were interested in modeling onset of a disease,
researchers will need to define a cohort with the disease (the cases)
and a matched cohort that does not have the disease (controls). Then,
these cohorts will be mined for predictive signals that distinguish the
two cohorts.

However, defining these cohorts is often problematic. When talk-
ing to our medical colleagues, they described the painful scenario of
how they recently defined a cohort. It involved medical doctors pon-
tificating how certain diseases may be represented in EMR diagnosis
codes, which are abstract as they are typically used for billing and not
for recording diseases. After the doctors’ suggestions, technologists
would then design SQL queries to model the patients as described,
and prepare reports for the medical doctors to review. Often, the re-
sulting patient set would be too small or too large to do meaningful
analysis, or the patients would have properties unforeseen and not
valid for the cohort study they had in mind. In a recent project, the
colleague described this process took several months and over a dozen
iterations, which significantly delayed the ability to begin building pre-
dictive models. In the end, the cohort was defined using a sequence of
one of 30 possible and different diagnosis codes, clinical encounters
of 4 different types, complex temporal constraints determining when
the patient truly had onset of a disease (e.g. if two diagnoses appear
in the first year, and the third occurs within 18 months, use the date of
the first diagnoses – otherwise use the second), age criteria constraints
at time of diagnosis, and temporal constraints ensuring there is enough
data surrounding these diagnoses to be useful for predictive modeling.
In fact, the details for cohort definition ended up requiring a lengthy
document to describe its complexity, and a series of Python and SQL
scripts to extract the cohort from the database.

Only after this cohort was defined could the researchers begin fo-
cusing on what their goal was all along: building predictive models to
predict the onset of a disease.

COQUITO was designed to alleviate this process of cohort con-
struction, where the domain experts could be empowered to do query
generation and exploration. Furthermore, the queries should be fast
enough that it can be used interactively, particularly in exploratory re-
search group discussions where cohort definitions are brainstormed.

3 RELATED WORK

There are two main ways of supporting users to define a set of records,
or a cohort, in temporal data: a pattern recognition approach where
users begin with an overview of the data and then filter towards their
desired result set, or a pattern specification approach where users spec-
ify a query. We review related work among these two approaches, as
well examples of recent visual-based cohort exploration systems for
medical records.

3.1 Pattern Recognition Approaches
The pattern recognition approach allows users to start with a view
of records, and using these records, determine an interesting pattern,
and expand the result set to find more records that fit the pattern.
Overview-based visualizations also fall into this category, as users may
not have any expectations to properties of the data, but upon finding
interesting visual patterns, choose to filter on demand.

A visual way of finding repeating patterns in single records of con-
tinuous time data can be done by using a spiral view of the data as pro-
posed by Weber et al. [38] and Carlis and Konstan [5]. Also for con-



tinuous time data, TimeSearcher (Hochheiser and Shneiderman [15])
introduced time boxes that allow for brushing multiple time spans and
value ranges. With TimeSearcher 2, Buono et al. [4] amends this by
introducing a similarity search feature. Pattern searching in the ISS
solar panel motor data is done by Haigh et al. [14]. Users can select
time windows that are being used for the pattern search and also can
join multiple windows temporally or logically to make the search more
specific. The joins are specified using a visual interface. Holz and
Feiner [16] follow a semi-automatic approach called spatially relaxed
selection in which a user sketches a pattern and the system finds sim-
ilar sections in the data. TimeBench [33] provides a software library
with data structures and algorithms for building pattern recognition
capabilities for visual analytics tools.

Lin et al. [24] with VizTree uses a suffix / subsequence tree showing
the frequency of patterns as edge weight to search discretized con-
tinuous time data. This enables the discovery of both common and
unusual patterns. Vrotsou et al. [37] expands on this idea in ActiviT-
ree by dynamically expanding the tree via user interaction while using
the created path as query. ActiviTree is used on daily activity of per-
sons data which consists of point event time lines. Demographics (i.e.
gender) of the resulting population are shown.

In Similan 2 the user can query EMRs using a record as reference
(Wongsuphasawat et al. [41]) to find similar patients. Aligning, rank-
ing, and filtering records eases this task. In LifeFlow (Wongsupha-
sawat et al. [40]) users get an aggregated view on EMRs from inten-
sive care unit logs. This way common patterns about patient treatment
can be detected. EventFlow (Monroe et al. [27]) is an extension of this
which can handle even larger and noisier data sets. This is achieved by
simplifying records and allowing for alignments on arbitrary points in
time.

Finally, there are also numerous automated data mining techniques
to detect patterns in single or multiple records or features (e.g. Keogh
and Smith [20], Wu and Chen [42]). A recent approach, Frequence
(Perer and Wang [32]), integrates an automatic frequent sequence min-
ing approach with an interactive visualization.

3.2 Pattern Specification Approaches
An alternative approach for creating cohorts of records is to start by
defining a specification and using matching elements as result set. This
approach is often rooted in a prior assumption about the data, a hypoth-
esis, or expert knowledge. In order to tailor the resulting record set to
desired needs, the specification often needs to be iterated and altered
slightly until a satisfying result is reached.

There are numerous extensions to standard query languages, like
SQL, that ease the task of querying temporal data (e.g. T-SQL [26],
Sequence Subset Operators by Dunn et al. [9], Tquel by Snod-
grass [36]). However, formulating queries in those languages is still
too complex for many domain experts.

Visual query languages ease this task by giving an easy to interpret
visual representation of the current query. Chittaro and Combi [7] use
a paint strip metaphor to show interval relations and query a patient
history database. Different event types occupy their own row in the
visual representation. However, this leads to harder to read queries
since you have to find the row of a given type first. Also, logical op-
erations cannot be represented in the query and need to be encoded
separately. This is done by Combi and Oliboni [8] who add a separate
logic composition area to apply logical operations to the queries. PAT-
Expert [21] also supports a graphical representation of boolean query
operators, but partial results are not shown in line with the view.

PatternFinder (Fails et al. [11]) lets users formulate queries on pa-
tient event histories with connected boxes. Each box represents an
event constraint that is customizable by widgets in the box. The same
applies for specifying the sequential constraints of the events. Results
are shown in a different visualization showing the individual matches
of the query per patient. A similar approach is Query Marvel (Jin and
Szekely [18,19]) which replaces the boxes with a comic strip metaphor
and introduces negation, conjunction, and disjunction of events. As
with our system their representation of queries focuses more on the
relative order of events which makes it easier to formulate and read

queries than with the paint strip metaphors mentioned above. How-
ever, both PatternFinder and Query Marvel allow only for a single se-
quence of events (i.e. no branching like in our tool) and neither show
intermediate results nor provide hints on what constraint to add to the
query.

Monroe et al. [28, 29] also introduced a visual query language for
their point and interval data in EventFlow. The search queries are spec-
ified by creating event sequences using the visual encoding of its pre-
decessor LifeLines 2. Queries can contain constraints including point
events and intervals specifying presences and absences which also can
overlap. Forms are used to specify constraints and results are shown
in the aggregate view of EventFlow. Intermediate results are implic-
itly shown in the result view. However, since only patients matching
the query are shown there is no way to detect when in the sequence
of events patients got removed from the result. Therefore it is difficult
to find out which part of the formulated query is responsible for e.g.
the removal of the most patients. Similarly, DecisionFlow [13] sup-
ports the analysis of high-dimensional temporal event sequence data
with interactive visualizations, but relies on non-iterative, form-based
queries.

For non-temporal query systems, Elmqvist et al.’s [10]
DataMeadow provides a graph based query system where con-
nections between nodes represent the flow of the data. Nodes
represent filters or set operations which represent the current state of
the data, with only a limited amount of attributes visible per node.
DataMeadow lacks an explicit way of suggesting what to do next and
cannot express temporal relations, like COQUITO.

Another system, DataPlay by Abouzied et al. [1], lets users for-
mulate nested queries that are represented in a tree structure. Users
create queries by typing commands into an interface, aided by sugges-
tions from both nodes in the tree and the dynamically generated result
set. DataPlay does not allow for intermediate query results or time
sequence queries.

Zhao et al. [44] shows results of faceted search results in a Venn
diagram like way by positioning all points of the dataset. However,
aside from duplicating points, there is no way to show intermediate
results. This system also does not support large numbers of rows or
temporal data.

Our work, COQUITO, provides a visual way for pattern specifica-
tion. Additionally, it provides complementary visualizations to pro-
vide hints so users can also recognize interesting patterns to include
in their queries. After an exhaustive literature review, COQUITO ap-
pears to be the first pattern specification system for temporal event
sequences to show results in-line with the query, show intermediate
results for subqueries, and provide hints for new query constraints.

3.3 Cohort Exploration in Electronic Medical Records

In addition to several of the above systems that were designed for med-
ical records, there are other recent tools that allow users to visualize
patient cohorts. A recent survey provides a thorough analysis of works
on exploration and visualization through 2013 (Rind et al. [34]). More
recent work includes Outflow (Wongsuphasawat and Gotz [39]) and its
successors CareFlow (Perer and Gotz [31]) and DecisionFlow (Gotz
and Stavropoulos [13]) which allow users to view the temporal trends
of similarity-based cohorts. CAVA (Zhang et al. [43]) uses multiple
visualization techniques, including bar charts, treemaps, and Outflow
visualizations, to explore and analyze patient cohorts, integrated with
analytics.

A different approach is utilized by Malik et al. [25] with the tool
CoCo. CoCo compares patient cohorts of ICU data and identifies dif-
ferentiating metrics and event sequences.

4 SYSTEM

In this section, the user interface of COQUITO is described in detail,
starting with the query view, how to interpret the visual representa-
tion, and what interactions are possible. Next, other visual elements of
the user interface, including the event search panel, the demographics
view, and the event treemaps are described. Then, we explain how the



interface can be integrated with external cohort analytics using web-
based APIs (e.g. a predictive modeling pipeline). Last, the temporal
query server is described to showcase how queries are computed ef-
ficiently. COQUITO’s visual UI is implemented using D3 [3]. The
Temporal Query Server is implemented in Java and Apache Tomcat to
efficiently query a DB2 database server.

4.1 User Interface
The main part of the user interface of COQUITO is the query view,
which occupies the center of the UI. A query, as seen in Fig. 2, is
divided into junctions which are connected with routes. The left-
most junction, the source, represents the entire population. The right-
most junction, the results, represent the members that satisfy all user-
defined constraints. Users can add new junctions on the route between
the source and the results, which filters the population by putting con-
straints on their timelines. The radius of a junction, as well as its color
saturation, are log-scale proportional to the total count of members that
satisfy the query up until the point. A numerical label, describing the
actual count, is also placed below each junction for precise feedback
to users.

There are numerous types of temporal constraints that users can
impose on their cohorts. The most common constraint type are event
existence constraints which require an event to appear in a member’s
timeline. Event types are categorized by their inherent hierarchies
which allow users to specify a desired granularity. Each hierarchy re-
ceives a categorical color to represent it in each of the views. Event ex-
istence constraints can also be negated by applying a “NOT” operation
from above the query view on to an existing constraint. Negated nodes
are shown with a red outline. Furthermore, age constraints can also be
invoked to restrict members to a certain age range when a given event
occurs. In contrast to the previous constraints there are some features
of members that are time independent, like gender or ethnicity. This
enables users to filter members to contain, for example, only women.

Overall, the combination of junctions and constraints allow users
to express all common set operations (such as “AND”, “OR”, and
“NOT”). Query references (Section 4.1.4) further allow set operations
on end results of queries.

To demonstrate how the visual query builder works, consider a sce-
nario where a medical researcher wishes to query for a diagnosis of
“Glaucoma” followed by both “Visual Field Examination” and “Eye
Exam & Treatment” procedure events in any order. Initially, she will
start with an empty query which returns the entire population (Fig. 3a).
Then, she adds a “Glaucoma” constraint node onto the source junction
(Fig. 3b). After that, she drags a “Visual Field Examination” constraint
to follow the “Glaucoma” node. Constraint nodes can be created by
dragging visual elements from the other views, which are described
later. As users drag new constraints, the creation of a new junction
is hinted in the UI as with a subtle gray junction appearing under the
cursor (Fig. 3c). Then, after dropping the constraint, a new junction
containing the event existence constraint is created. As the query is
still running, the constraint node is colored with a stripe pattern to
indicate it is still loading (Fig. 3d). After the query finishes a few
moments later, the junction is sized and colored according to its new
member population (Fig. 3e).

However, in the scenario described above, the researcher wishes for
both “Visual Field Examination” and “Eye Exam & Treatment” pro-
cedures to take place. Therefore, she drags “Eye Exam & Treatment”
into the same junction to make it a conjunctive constraint (Fig. 3f).
As new constraints are dragged into existing junctions, users receive
visual feedback of an animated expanding junction as they drag con-
straints onto the top of it.

Upon seeing the results and not being satisfied, she changes her
mind and wants a cohort that either has a “Visual Field Examination”
or an “Eye Exam & Treatment”. She drags the “Eye Exam & Treat-
ment” constraint from its current junction, and drags it to after the
“Glaucoma” junction. This creates two routes to the results, which
yields a larger result population (Fig. 3g), as members of all disjunct
paths in the query are summed in this rightmost junction.

However, the researcher wishes to make sure the members in her

cohort actually had the medical procedures shortly after their “Glau-
coma” diagnoses. Therefore, she wishes to specify a time window in
which events need to appear. She does this by clicking on the route
between the junctions which opens an input box for specifying a time
window of less than or equal to 5 days (Fig. 3h). Time windows on
routes define when the first event of next junction need to happen, and
this can be a closed or open interval. Time windows can also be spec-
ified for junctions themselves when they contain multiple constraints
and users wish to have them all happen within a given time.

The researcher now wishes to compare how much member over-
lap there is between the “Visual Field Examination” junction and the
“Eye Exam & Treatment” junction. To do this, she drags “Visual Field
Examination” junction on top of the other junction, and she receives
visual feedback in form of a yellow circle indicating how many mem-
bers are in the intersection between both junctions (Fig. 3i). This in-
teraction can be used, for example, to get information about overlaps
between separate branches of a query.

For further analysis the researcher wants to find patients distinct
from the current result but with a similar history. To do this, she cre-
ates a new query and drags the node of the result junction onto the
newly created input junction. After that she performs a “NOT” opera-
tion on this reference node (more details in Section 4.1.4) and adds a
junction containing a “Glaucoma” and one containing a “Visual Field
Examination” constraint. Now her second query contains all patients
that are not in the result of the first query but still had a “Glaucoma”
diagnosis before a “Visual Field Examination” (Fig. 3j).

Some tasks may require balanced cohort sizes, however, there are
currently different sizes of these result sets. In order to match patients
from the query returning fewer results with patients from the larger
query the user drags the node from the result junction to the junction
with more results. This samples the result of the larger query to match
the result of the smaller query (Fig. 3k).

Different queries use different base colors to be identifiable in the
other views. For instance, if she wants to understand the difference
between the cohorts, she can click on junctions which in turn become
yellow to indicate selection. The demographics panel will populate
with summary information, such as the gender, ethnicity, and age dis-
tribution of the junction. This information is shown for each query
distinguished by their base color (Fig. 3k).

It is also possible to encode various attributes inline with the query.
For instance, in Fig. 4, the gender attribute was applied to the routes.
In this mode, the height of the blue routes represents the proportion
of male members that satisfy each constraint, and the red routes match
the proportion of females. It is also possible to visualize other domain-
relevant attributes in this mode, such as health outcome (e.g. the pro-
portion of patients that remained healthy or were hospitalized). How-
ever, this feature likely does not scale beyond attribues with a small
number of values, such as binary attributes like gender or health out-
come.

4.1.1 Event Search

COQUITO features a search functionality on the right side of the user
interface, so that users can locate specific events of interest to add as
constraints to the system (see Fig. 4). As users type the event name,
the results are automatically filtered to show the matching events with
each keystroke. Each event name is augmented with an icon to help
users distinguish what type of event it is (e.g. medication versus diag-
nosis). Color indicates event type and corresponds to the same colors
used in the query view and treemaps. The numeric label inside the
icon refers to the level of the event within its hierarchy (i.e. a 1 refers
to a top level, e.g. “Medication”, whereas a 4 refers to a finer level,
e.g. “Aspirin”). If users wish to browse different hierarchical levels
of the event types shown, they can click the icon to see all ancestor
elements, so users can quickly select less specific levels of interest. If
a user wishes to use this event as a constraint in a query, they can drag
the icon into the query view.
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Fig. 3. This Fig. demonstrates how a query is built using COQUITO. Refer to the User Interface section (Section 4.1) for a description of each
step.

4.1.2 Demographics

The bottom right of the UI provides a view of the general demograph-
ics of the cohorts, as shown in Fig. 5. Currently, COQUITO shows bar
charts for gender, ethnicity, and age of the population in this view, by
default, but can be expanded to show other variables. If users create
multiple queries, each demographic chart has multiple colored bars
for each of the corresponding queries (e.g. Fig. 3k). Initially, the
bar charts will show demographics of the entire population, but when
users click on a junction, the bar charts will update to show the de-
mographics for members that match the junction’s constraints. The
demographics are also interactive, so users can drag values from the
demographics view into the queries themselves. For instance, if users

want to limit a query to females, they can drag the female bar chart
into a junction of interest.

The age distribution bar chart is a special case, as the age of people
may change over the progression of a query. If a user drags an age
constraint to a junction, the junction will require a person to be within
the specified age range to satisfy the constraint. Users can also later
edit the age constraint values by clicking on it, and modifying the time
constraint.

4.1.3 Treemap
In order to get an overview of which events are common within the
population, treemaps are shown at the bottom part of the user inter-
face. Each top level event type, like diagnoses or medications, has



Fig. 4. An overview of the COQUITO user interface. The center features the visual temporal query to define a cohort. On the right, the search
box is being used to locate additional event constraints. Below the query, treemaps are shown to show the event distribution after the selected
junction (“Glaucoma” in yellow). On the bottom right, demographics of the selected junction are also shown, including gender, ethnicity, and age
distributions.

Fig. 5. Demographics of the whole population of a medical dataset. The
top left bar chart shows the gender distribution of the complete data set
and the top right shows the ethnicity distribution, which is unspecified in
this dataset. The bottom bar chart shows the age distribution of the pa-
tients through the whole data set. The actual values are shown vertically
within the bars as well as tool tip when hovering with the mouse.

its own treemap (Fig. 6a). Within each treemap, the events are or-
ganized hierarchically (such as grouping medications by their higher
level classes). By default, and when the source junction is selected, the
size of each node in the treemap reflects the number of members that
have such an event. When users select a junction, the treemap is sized
by the members that have such an event occur after the clicked junc-
tion. In this scenario, the treemaps act as a hint as to how new event
constraints will effect the cohort results. To avoid making the treemap
overwhelming for users, all events that are less than 10% as frequent
as the most common event are merged into one gray node labeled as
“Remaining” whose size reflects the sum of all merged nodes. Users
can drill-down on a treemap by clicking on a node, which expands the
subtree to the full size of the treemap (i.e. Fig. 6b shows a drill-down
into the “Major Symptoms” subtree). Breadcrumbs at the top of the
treemap show which part of the event type hierarchy is being visu-
alized. The breadcrumbs can be clicked to navigate upwards in the
hierarchy. All treemap nodes and breadcrumbs can also be dragged
onto the query view to add new constraints.

Often, users may wish to group together multiple types of events, so
that users can refer to them as a single meta-event, or group, in a query.
A naı̈ve approach to achieve this would be to force users to build paral-
lel paths over and over again, which is time consuming. To overcome
this limitation, COQUITO provides a way to define arbitrary disjunc-
tive groups as a new group event type. A special, initially empty, addi-
tional treemap serves as target for group events (Fig. 6c). Dragging a
node onto this treemap adds the given event type to a group or creates
a new group of event types if it was dragged on a special “New Group”
node in the treemap. The size of each group node is proportional to
the number of members who satisfy the group’s events. Users can then
drag groups from this treemap onto a query to add a group constraint.
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Fig. 6. Treemaps show the hierarchies of event types. The highest level of the “Diagnoses” hierarchy can be seen in (a) while (b) shows the next
level for the subtype “Major Symptoms, Abnormalities”. The size of the elements reflect the total number of occurrences of a given type in the whole
data set. (c) shows two user-created meta-event groups.

4.1.4 Referencing Query Results

For certain cohort construction tasks, users may need to be able to ref-
erence results of a query inside a different query. Many cohort analysis
tasks require cohorts that have no overlap, such as when users need to
define a case cohort (a population with a condition) and a control co-
hort (a population without that condition) to compare the differences.
For instance, after defining an initial cohort, users may wish to create
a new query that only examines data that is not in the results of this
first cohort, but with additional constraints. COQUITO supports this
by dragging the node of a query’s result junction onto an input junction
of another query. The created reference node can also be negated with
the “NOT” operation (indicated by a red outline of the node) from
above the query view resulting in the complement of the referenced
query as input for the given query (e.g. see Fig. 3j). Furthermore, by
combining multiple reference nodes in the same junction, users can
intersect multiple result queries or subtract patient sets (via negated
reference nodes).

4.1.5 Matching

Cohort matching, or balancing, is an optional process of making the
case and control cohorts comparable with respect to extraneous fac-
tors. For certain types of cohort studies, the cases and controls should
be as similar as possible with regard to potentially important con-
founding factors. A variety of approaches exist to do this this, includ-
ing techniques proposed by Rose and van der Laan [35] and Last [23].
COQUITO currently supports a naı̈ve matching algorithm using ran-
dom sampling to balance the size of the cohorts. However, the system
is extensible to support more sophisticated techniques, such as logistic
regression, by connecting to API services that do the matching calcu-
lation. Matching is performed by dragging a result node of a query
on top of the result junction of the query that should match with the
dragged query (see Fig. 3k).

4.1.6 Integration with external Cohort Analytics and Predictive
Modeling

Users can also export result sets of the queries into file formats such
as CSV, so that the cohorts are available to other applications, or for
further analysis. In addition, there is functionality to support direct in-
tegration with existing APIs, e.g. sending the patient cohort to a cohort
analysis back-end and displaying the results in the user interface.

As an example, COQUITO has been integrated with the PARAMO
predictive modeling pipeline [30]. Users can use the “Deliver to
Pipeline” button to send the cohorts defined visually by “Case” and
“Control” queries to a pre-configured predictive model. After the
model is created and evaluated, COQUITO displays the overall evalu-
ation score (the AUC (Area Under Curve) score, a common measure
of the predictive quality of models [12]). If users wish to inspect the
model more closely, clicking on the AUC value will launch a separate
window visualizing the model features using the INFUSE system [22]
(see Fig. 7).

4.1.7 Save & Load Functionality

We encourage exploration and mitigate the impact of making mistakes
while building a query by providing a history and save & load func-
tionality in the user interface. Each change that is made to the query
is added as point in the browser history to enable the use of the nav-
igation buttons provided by the browser. In addition, queries can be
saved as files and be loaded again at a later time.

4.2 Temporal Query Server

Users may wish to extract cohorts from databases with millions of pa-
tients, each with thousands of unique events, which are among tens
of thousands of distinct event types. Querying those databases might
take a very long time, considering users not only want the end result
of the query but also each member (and their corresponding times-
tamps of the constraint event) within each junction in the query. The
same holds true for the computation of the event hierarchies for the
treemaps, which takes a set of members and a time stamp as input.
While a query is in progress, the affected junctions and links in the
query view are shown with stripe patterns as seen in Fig. 3d. Despite
these demands, COQUITO employs various techniques to ensure the
server’s response is interactive.

4.2.1 Incremental Changes

Often, during exploration, users will modify a query with incremen-
tal changes that affect only one path of the query, so there is rarely
the need for the server to compute the full query. When a junction is
modified, only the results for the junction itself and its descendants are
recomputed. Furthermore, users are not forced to wait for a query to
finish before they continue interacting with the UI, so they can con-
tinue to add or modify existing constraints. If other parts of the query
are changed before a previous request returns, the new set of junc-
tions to recompute is joined with the previous set. Responses from the
server are sorted by the time of the request so that no result of older
requests can overwrite more recent results. Since the server often does
not compute the full query, but instead returns the population for every
junction, the computation of the overall result of the query is done on
the client side by creating the set union of the end points of all query
paths.

4.2.2 Caching

An additional way of speeding up server responses is achieved by
caching the most recent and most common queries. A LRU (Least
Recently Used) cache with the ability of perpetually caching special
requests is used for query, treemap, and demographics requests. How-
ever, matching queries is not necessarily trivial. A hash value is com-
puted for every query tree in order to quickly reject unequal query
trees. If the hash is the same, a tree matching algorithm that respects
arbitrary ordered children and constraint nodes is used to verify that
both trees are the same and the cached response can be used.



Fig. 7. After generating a cohort of patients with Diabetes in Fig. 1, the medical researcher creates a corresponding cohort of control patients with
Diabetes by using COQUITO’s referencing and matching features.

4.2.3 Query Execution

A naı̈ve translation of a query built with COQUITO to SQL would re-
quire nesting queries, which is quite complicated for query builders.
For example, the query would first filter for all events after the first
constraint, then on this sub-table filter for all events after the second
constraint, and so on. Even this complexity does not take into account
branching and specifying further temporal restrictions that COQUITO
supports. As the sequence of events in time show up as multiple rows
in the database, it is not possible to formulate simple queries without
nesting and examining sub-tables. Formulating such a query requires
an analyst to think of requirements from a database point of view and
not from a point of view that expresses the natural way of brainstorm-
ing temporal queries. We believe this limits analysts to quickly formu-
late hypotheses or explore data set freely.

In order to avoid some of this complexity, our Temporal Query
Server actually computes queries in two stages. First, the row based
representation of point events in the database is converted into actual
timelines while simultaneously filtering only for event types relevant
to the query. Then, the server recursively searches each timeline for
matches of the users’ specification.

This process is illustrated in Fig. 2, where the server attempts to see
if the patient matches the cohort query. The patient has an A event, so
Junction 1 is satisfied. However, it needs to find a B and C event within
7 days in order to satisfy Junction 2. The A event found in Junction 1
is not sufficient, so it moves forward to the other A events to test. It
finally succeeds when it finds the A event on Day 16. A similar pro-
cess is used to see if the patient satisfies Junction 3’s constraint. This
example also showcases that the same person can appear in multiple
nodes and in different branches of the tree, as shown by the patient
who matches both Junction 2 and Junction 3.

In order to build the treemaps, event hierarchies need to be queried.
If the user selects a junction the treemap reflects the event hierarchy
only for events that happen after the events matched by the junction.
Those events can happen at different times for each member. There-
fore, an on-demand table is created filtering events that happen after
the timestamp corresponding to each member. This table is then aggre-
gated on each level of the event hierarchy. Events occurring multiple
times in the timeline of a member are only counted once.

5 CASE STUDIES

In order to show the utility of COQUITO, we describe two case studies
of how cohorts were constructed from real-world datasets using our
tool. As the nature of cohort construction is exploratory in nature,
real user tasks do not map well to tasks measuring time or errors in a
traditional controlled study. Instead, we showcase COQUITO on two
datasets with real users to demonstrate it works in multiple domains
on big, real-world datasets.

5.1 Medical Cohort Analysis
Our first case study involves a clinical researcher interested in extract-
ing case and control cohorts from a longitudinal database of electronic
medical records for use in predictive modeling. The researcher is an
MD with a background in internal medicine. His database features
over 200,000 patients from a major healthcare provider in the United
States. The database contains over 5,000 unique medications, 11,000
unique procedures, and 14,000 unique diagnoses, and the researcher
is interested in building cohorts based on these medical features. His
larger goal is to better understand if the onset of Diabetes, a chronic
diseases with high blood sugar levels that often lead to serious health
complications, can be predicted from this type of data.

Attribute-based filtering is not sufficient for this use case, as he
needs to build cohorts where the temporal order of treatments, proce-
dures and diagnoses is important. However, these queries are notori-
ously difficult to write, so he typically requires a team of technologists
and database experts to write the SQL to define his cohorts based on
his clinical expectations. However, since clinical hypotheses do not
always map well to EMR features, the results are often too restric-
tive or too general, so he often has to do several iterations of queries,
which when relying on others, can drag on for weeks or even months.
The clinical researcher recalled a recent project where the cohort query
definition took a few months time and about a dozen iterations.

As the researcher only recently received access to the healthcare
provider’s database, he is unfamiliar with the contents and if there
would be enough patients to test his hypotheses. His first investiga-
tion was set to involve patients with Diabetes and related conditions.
After searching for and dragging the appropriate Diabetes diagnosis
code to the query view, he realized that about 10% of the patient pop-
ulation had such a diagnosis, and he was off to a good start. He was



particularly interested in Diabetes patients that have also been diag-
nosed with Proteinuria, a sign of renal (kidney) damage, common to
Diabetes patients. After dragging this diagnosis to the query, there
were 963 patients left, which he considered a reasonable cohort size
to do his analysis. However, only some of these would go on to have
renal failure (136). Of those, some would receive Hemodialysis (an
ambulatory treatment), and others would receive Peritoneal dialysis (a
treatment that can be done at home). He wanted to consider patients
with one or both types of treaments, so he used a branch junction to
get his final result set of 26 patients – and used this as the query to
define his Case cohort. This query is shown in Fig. 1.

Curious about how predictive the onset of diabetes is in this com-
plex patients, he created a new Control cohort query by referencing
and negating the results of this original case query, so this new co-
hort would not have any of the same patients. Since he wanted to
compare the Case patients to other patients that also had renal fail-
ure, he dragged the Proteinuria node to this query too, followed by
a Renal Failure node. Similarly, he followed this with a branch of
Peritoneal and Hemodialysis treatments, which resulted in 17 control
patients. Since this number was smaller than the cases defined above,
he dragged the Control results node to the Cases results node, shown
in Fig. 7. Now that these cohorts were defined, he delivered them to
his predictive modeling pipeline in PARAMO. Later, after the pipeline
executed, the researcher was able to get the results of the prediction
inside COQUITO (an AUC score of 0.87). He was quickly able to
determine that there were indeed predictive features embedded in the
EMRs of these diabetic patients.

The clinical researcher was excited by the speed of being able to
determine the efficacy of the database, as well as also being in control
of the cohort construction. He explored a variety of other diabetic
sub-cohorts, built a variety of useful predictive models, and plans to
continue using COQUITO as a part of his regular workflow.

5.2 Social Media Cohort Analysis

Our second case study involves a social media researcher interested in
defining cohorts of people who exhibit interesting temporal patterns
of visiting locations. Such data is available from Location Sharing
Services, where users choose to broadcast the various places they visit.
Marketing researchers are interested in better understanding if data
from Location Sharing Services can give businesses and consumers
improved experiences, by better understanding customers’ habits and
desires.

One such service is Foursquare, which allows its users to check-in
at different venues to save and share their locations to friends. Accord-
ing to Foursquare3, there are over 55 million users and over 6 billion
check-ins with Foursquare, as of March 2015. A corpus of a subset
of Foursquare data was made publicly available [6], which contains
over 200,000 users and over 22 million check-ins. This corpus was
further filtered to users in New York City (NYC) in [32], where the
database consists of 17,739 users with 419,023 check-ins in 17,182
unique venues over 11 months. In this NYC-centric database, each
unique venue was augmented with Foursquare’s hierarchy of 9 top-
level categories and 289 sub-level categories to create three hierarchi-
cal levels-of-data on which to query cohorts.

For her analysis, the researcher desired to understand the differ-
ences in demographics and social media popularity of two different
populations, so she used COQUITO to create two parallel queries,
shown in 8. For example, the researcher was interested in the trajec-
tory of different Foursquare users who begin their day at coffee shops.
Some, as shown in the blue query, move on to farmer’s markets, and
then cocktail bars. Others may go to fast food restaurants, followed
by dive bars. The social media researcher can easily compare how
many people fall into both queries by dragging the red query’s results
junction over the blue query’s result junction – and seeing the over-
lap. After determining the cohorts were disparate populations, she
exported the member sets generated by COQUITO, as CSVs, to her
usual analytical tools and computed statistics about these populations.

3http://www.foursquare.com/about

Fig. 8. As a part of a case study with a social media researcher, CO-
QUITO is utilized for analysis of Foursquare users’ “check-ins”. In this
example, the researcher is able to create two parallel queries to gen-
erate two complementary cohorts for analysis based on their temporal
patterns.

An example of the resulting insights from this analysis included that
the cohort that ended up at cocktail bars instead of dive bars had 36%
more Twitter followers, suggesting this might be a more valuable pop-
ulation to market to, if the businesses goal was to drive more social
media traffic. This is despite the fact that this cohort actually tweeted
about 10% less than the dive bar cohort. COQUITO allowed the re-
searcher to segment the population in more meaningful ways than her
traditional analysis tools supported, and this is just one example of the
types of insights that this iterative exploration afforded.

6 CONCLUSION AND FUTURE WORK

We presented COQUITO, a visual query tool to interactively create
cohort populations with temporal constraints. By providing iterative
feedback during query creation, the system encourages exploration
of the underlying data-set with complementary visualizations of bar
charts showing demographic properties and treemaps showing the dis-
tribution of events. Visible elements from each of these views can be
used to expand a query, even when previous queries are in-progress.
In order to support rapid, interactive feedback, query execution is opti-
mized by COQUITO’s temporal query server. Furthermore, the useful-
ness of the tool was demonstrated with case studies of domain experts
using the tool on real-world datasets.

However, there remains future work to understand the effects of al-
lowing users to create visual temporal queries for cohorts. We plan
additional usability studies to ensure the visual query language and
interactions are comprehensible for a diverse set of domain experts.
Although our case studies provide anecdotal evidence that users are
able to master COQUITO’s visual interface with less than 15 min-
utes of training, formal usability studies should also be conducted in
order to quantify the effectiveness of the design of all advanced fea-
tures. Furthermore, a request by many of the domain experts that have
used the tool is to include standard statistical tests within COQUITO.
This would allow them to make advanced decisions about their cohorts
without having to first export the cohorts to their traditional tools. Fi-
nally, currently the tool only supports queries relating point events. An
interesting challenge would be to expand the visual query language to
also support interval events.

http://www.foursquare.com/about
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